В электрической печи при напряжении



Оптимальный электрический режим работы

Современные дуговые электрические печи представляют собой очень мощные потребители электроэнергии, характеризуемые сложным характером работы. Процесс плавки обычно складывается из трех периодов, отличающихся друг от друга величиной потребляемой мощности. Мощность трансформатора используется полностью в период плавления, примерно на 70% — в окислительной и на 50% и менее — в восстановительный периоды.

Для определения оптимального электрического режима работы на каждой ступени строят так называемые «рабочие» электрические характеристики печи. Для этого опытным путем определяют электрические параметры на печи в режиме холостого хода и короткого замыкания.

Оптимальным является режим, обеспечивающий большое значение мощности дуги (полезной мощности) при достаточно высоких значениях электрического коэффициента полезного действия и коэффициента использования мощности.

Поддержание электрического режима на каждой ступени напряжения в пределах, близких к оптимальному, осуществляется автоматическими регуляторами.

На электропечах применяют релейно-контакторные регуляторы типа РРТ, регуляторы с электромашинными усилителями типа РМД, электрогидравлические регуляторы типа АРРГ, бесконтактные регуляторы с электромагнитными усилителями типа РБС, регуляторы на тиристорах типа СТУ-022 и др.

У регулятора релейно-контакторного типа предусмотрена одна ступень скорости на подъем и одна на спуск электрода. Скорость подъема и опускания не увязывается с величиной отклонения регулируемого параметра от заданного, поэтому разработано несколько конструкций регуляторов, реагирующих на величину рассогласования параметров. Для них характерна переменная скорость перемещения электродов, пропорциональная величине отклонения параметров от заданного режима.

Такие регуляторы отличаются повышенной чувствительностью и меньшей инерционностью. Так, чувствительность релейно-контакторного регулятора составляет примерно ±30% от заданного режима, гидравлического регулятора ±10%, а применяемого в последнее время бесконтакторного электронного регулятора с магнитными усилителями типа РБС ±3%.

Регулятор мощности на тиристорах типа СТУ-022 работает следующим образом. При номинальном электрическом режиме на выходе схемы сравнения напряжение равно нулю. Падения напряжения на сопротивлениях Rx и равны и противоположны по знаку. При этом фазосдвигающее устройство не формирует импульсов управления, тиристоры УВХ—УВ% заперты и ток в цепи якоря двигателя перемещения электрода отсутствует. При отклонении силы тока дуги от заданного на выходе схемы сравнения появляется напряжение разбаланса U. Усилитель мощности УМ выдает сигнал ФСУ на формирование импульсов управления соответствующей выпрямительной группой УВ3 или УВ4—УВ6 тиристорного преобразователя. В цепи якоря двигателя М возникает ток определенной полярности, и двигатель перемещает электрод в нужном направлении. По мере перемещения электрода величина напряжения U уменьшается до нуля, и двигатель останавливается.

Предусмотрено также ручное дистанционное управление. Регулятор можно применять на печах емкостью от 3 до 200 т. Зона чувствительности регулятора может быть доведена до 1%. Время разгона и торможения двигателя не превышает 0,3—0,5 с. Скорость перемещения электрода составляет 3—4 м/мин, т. е. заметно больше, чем в случае применения широко распространенных регуляторов с электромашинными усилителями.

Применение регулятора СТУ-022 вместо регуляторов с машинным усилителем обеспечило повышение производительности печи и снижение удельного расхода электроэнергии. В результате сокращения длительности контакта электродов с металлом уменьшается науглероживание металла и улучшается качество выплавленной стали.

Исполнительные механизмы регуляторов мощности дуговых электропечей по типу привода подразделяют на электромеханические, объемно-гидравлические и дроссельно-гидравлические. Исполнительные механизмы должны быть надежными в работе, удобными для ремонта и обслуживания, исключать поломки электродов при упоре в шихту в ручном режиме управления и в нетокопроводящий скрап — при автоматическом регулировании. Кинематическая связь двигателя с электродом должна быть максимально жесткой, без зазоров. Привод должен исключать возможность опускания электродов под действием собственной силы тяжести, обеспечивать быстрый разгон, быстрое торможение механизма и максимально возможную скорость перемещения электродов.

В качестве привода исполнительных механизмов применяют шунтовые двигатели постоянного тока, дающие возможность плавно изменять число оборотов, легко и быстро осуществлять остановку, сводить до минимума время, необходимое для изменения направления вращения. Двигатели питаются током от усилителей автоматических регуляторов.

Расчёт величины тока по мощности и напряжению

Для обеспечения безопасности при эксплуатации бытовых электроприборов необходимо верно вычислить сечение питающего кабеля и проводки. Поскольку ошибочно выбранное сечение жил кабеля способно привести к возгоранию проводки из-за короткого замыкания. Это грозит возникновением пожара в здании. Это также относится к выбору кабеля для подключения электрических двигателей .

Расчет тока

Величина тока рассчитывается по мощности и необходима на этапе проектирования (планирования) жилища – квартиры, дома.

  • От значения этой величины зависит выбор питающего кабеля (провода). по которому могут быть подключены приборы электропотребления к сети.
  • Зная напряжение электрической сети и полную нагрузку электроприборов, можно по формуле вычислить силу тока, который потребуется пропускать по проводнику (проводу, кабелю). По его величине выбирают площадь сечения жил.

Если известны электропотребители в квартире или доме, необходимо выполнить несложные расчёты, чтобы правильно смонтировать схему электроснабжения .

Аналогичные расчёты выполняются для производственных целей: определения необходимой площади сечения жил кабеля при осуществлении подключения промышленного оборудования (различных промышленных электрических двигателей и механизмов).

Однофазная сеть напряжением 220 В

Сила тока I (в амперах, А) подсчитывается по формуле:

где P – электрическая полная нагрузка (обязательно указывается в техническом паспорте устройства), Вт (ватт);

U – напряжение электрической сети, В (вольт).

Ниже в таблице представлены величины нагрузки типичных бытовых электроприборов и потребляемый ими ток (для напряжения 220 В) .

На рисунке представлена схема устройства электроснабжения квартиры при однофазном подключении к сети напряжением 220 В .

Как видно из рисунка, различные потребители электроэнергии подключены через соответствующие автоматы к электросчётчику и далее общему автомату, который должен быть рассчитан на нагрузку приборов, которыми будет оборудована квартира. Провод, который подводит питание также должен удовлетворять нагрузке энергопотребителей.

Ниже приводится таблица для скрытой проводки при однофазной схеме подключения квартиры для подбора провода при напряжении 220 В

Сечение жилы провода, мм 2

Диаметр жилы проводника, мм

Как видно из таблицы сечение жил зависит кроме нагрузки и от материала, из которого изготовлен провод.

Трёхфазная сеть напряжением 380 В

При трёхфазном электроснабжении сила тока I (в амперах, А) вычисляется по формуле:

где P -потребляемая мощность, Вт;

U - напряжение в сети, В,

так как напряжение при трёхфазной схеме электроснабжения 380 В, формула примет вид:

В случае подведения к дому трёхфазного электроснабжения напряжением 380 В схема подключения будет выглядеть следующим образом.

Сечение жил в питающем кабеле при различной нагрузке при трёхфазной схеме напряжением 380 В для скрытой проводки представлена в таблице.

Сечение жилы провода, мм 2

Диаметр жилы проводника, мм

Для расчёта тока в цепях питания нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

  • электрические двигатели;
  • дроссели приборов освещения;
  • сварочные трансформаторы,;
  • индукционные печи.

При расчётах необходимо учитывать это явление. В мощных приборах и оборудовании доля реактивной нагрузки выше и поэтому для таких приборов в расчетах коэффициент мощности принимают равным 0,8.

На практике принято считать, что при подсчёте электрических нагрузок для бытовых целей запас мощности принимают 5%. В случае расчёта электрических сетей для промышленного производства запас мощности принимают 20%.

Барыкин Фёдор Степанович

Материалы по теме

Советы опытных электриков

г. Все права защищены

Копирование материалов сайта возможно без предварительного согласования в случае установки активной индексируемой ссылки на наш сайт.

По вопросам сотрудничества обращайтесь по email: info@elektro.guru

Печные трансформаторы

ДУГОВЫЕ ПЕЧИ

Основное назначение дуговых печей – плавка металлов и сплавов.

Дуговая печь представляет собой футерованный кожух, закрытый сводом, сквозь отверстие в своде внутрь опущены электроды, которые зажаты в электрододержателях, которые соединены с направляющими. Плавление шихты и обработка металла ведется за счет тепла электрических дуг, горящих между шихтой и электродами.

ЭЛЕКТРИЧЕСКАЯ СХЕМА ДУГОВЫХ ПЕЧНЫХ УСТАНОВОК

Электрическая схема дуговых электропечных установок включает следующее оборудование:

Печь с электродами, исполнительными механизмами регуляторов мощности печи и ванной, в которой горят дуги и находится расплавленный металл

Понижающие трансформаторы, вместе с которыми размещены дроссели

Короткую сеть, соединяющую вторичные выводы трансформатора с электродами печи

Коммутационную, измерительную и защитную аппаратуру, провода высокого и низкого напряжения.

ПЕЧНОЙ ТРАНСФОРМАТОР

Печной трансформатор служит для преобразовании электроэнергии высокого напряжения в энергию низкого напряжения. Трансформаторы, предназначенные для питания дуговых электрических печей, во многом сходны с обычными силовыми трансформаторами. Их конструктивные отличия обусловлены специфическими особенностями работы электрических печей.

ОСОБЕННОСТИ ПЕЧНОГО ТРАНСФОРМАТОРА

Большая величина номинального тока на стороне низкого напряжения, составляющая десятки тысяч ампер

Повышенное индуктивное сопротивление обмоток, необходимое для ограничения токов короткого замыкания до 2,5-3,5-кратной величины по отношению к номинальному току, так как сталеплавильные печи работают с частыми замыканиями электродов на шихту при зажигании дуги и обвале шихты в период расплавления

Повышенная механическая прочность крепления обмоток и отводов, рассчитанных на частые толчки токов и короткие замыкания

Возможность регулирования напряжения под нагрузкой в широких пределах.

КОНСТРУКЦИЯ ТРАНСФОРМАТОРА

Трансформатор состоит из трех обмоток высокого напряжения, выполненных из медного провода относительно небольшого сечения, и трех обмоток низкого напряжения, выполненных из шин большого сечения.

РЕГУЛИРОВАНИЕ НАПРЯЖЕНИЯ ДУГОВЫХ ПЕЧЕЙ

Возможные способы регулирования электрического режима:

Изменение подводимого напряжения

Изменение сопротивления дуги, т.е. изменение ее длины

АРМ дуговых печей должны обеспечивать:

Автоматическое зажигание дуг

Автоматическое устранение обрывов дуги и эксплуатационного короткого замыкания

Быстродействие около 3 секунд при устранении обрывов дуги эксплуатационного короткого замыкания

Апериодический характер процесса регулирования

Возможность плавно изменять мощность, вводимую в печь, в пределах от 20-125% от номинальной и поддерживать ее с точностью 5%

Остановка электродов при исчезновении напряжения питания

ДРОССЕЛЬ

При неустойчивых режимах работы печей малой и средней емкости необходимо включать дополнительное индуктивное сопротивление – дроссель. Величина относительного индуктивного сопротивления дросселей колеблется в пределах от 5 до 30%. Обмотку дросселя вместе с сердечником и обмоткой трансформатора погружают в масло.

ДУГОВЫЕ СТАЛЕПЛАВИЛЬНЫЕ ПЕЧИ КАК ПОТРЕБИТЕЛИ ЭНЕРГИИ

Дуговые сталеплавильные печи являются мощным потребителем электроэнергии, и поэтому электросталеплавильные цехи включают в мощные электрические системы, объединяющие по нескольку электростанций. Также сталеплавильные печи работают с низким коэффициентом мощности, равным 0,7 – 0,8, потребляемая из сети мощность меняется в течение плавки, а электрический режим характеризуется частыми толчками тока, вплоть до обрыва дуги эксплуатационных коротких замыканиях.

Ещё по теме:

Comments

One Response to #8220;Печные трансформаторы#8221;

Здравствуйте, нас интересует Трансформатор печной HSSPK-5500/10. Производится ли у Вас данный товар и какая будет его стоимость на условиях поставки СРТ г. Астана, Республика Казахстан, в количестве 1 штуки?
ниже прилагаю его технические данные:

1 Трансформатор печной HSSPK-5500/10 1 42 479 746,92
Основные технические параметры
Номинальная емкость 5500 kVA
Номинальное напряжение 10000/240V
I номинальное первичной обмотки 317.5A
Uном. Вторичной обмотки 240 V
Номинальный ток (I ном) вторичной обмотки 13231 А
Количество фаз трехфазный
Метод переключения напряжения Без выключения трансформатора
Способ охлаждения OFWF.
Принудительная циркуляция, водяное охлаждение
частота 50 Hr
Емкость реактора 467 kvar
Символ продукции 1WZT.720/4372
Символ стандарта JBIT9640-1999
выход провода Вверх

Применение:
специальный Трансформатор печной HSSPK-5500/10 используются для Электродуговой печи

1) Резервуар масла: диаметром 610х(2200+400)
2) Крышка резервуара: 2 шт.
3) Измеритель уровня масла: YZF2-200 –шт.
4) Поглотитель влаги- 2 шт.
5) Газовое реле QJ-50, 1 шт.
6) Бочка – 1 шт.
7) Газовое реле QJ-25, 1 шт.
Сборка проводниковой группы -3шт.
9) Муфта-BD-10/400
10) Клапан освобождения давления YSF5-55/80KJ-1шт.
11) Сигнальный термоизмеритель IBMY-803 A/XMT-288FC- 1 шт.
12) Сборка железа – 1 шт.
13) Высоковольтная обмотка – 3 шт.
14) Переключатель нагрузки НМК-8 1 шт.
15) Низковольтная обмотка – 3 шт.
16) Обмотка регулирования напряжения – 3 шт.
17) Масло трансформатора DB-25 6050 кг.

с/у Арман
+77017770581, +7(7172)240194

Источники: http://emchezgia.ru/elektropechi/27optimalniy.php, http://elektro.guru/osnovy-elektrotehniki/raschet-velichiny-toka-po-moschnosti-i-napryazheniyu.html, http://silovoytransformator.ru/stati/pechnye-transformatory.htm






Комментариев пока нет!

Поделитесь своим мнением

Сумма цифр: код подтверждения